
Continuous Visualization of CyRide
Through an Interactive Map

Team 22: Evan Schlarmann, Endi Odobasic, Braden
Buckalew, Andrew McMahon

Advisor: Selim, Mohamed
Client: Soliman, Mohammed

1

Table of Contents

3 Project Plan... 3
3.1 Project Management/Tracking Procedures.. 3
3.2 Task Decomposition...3
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria.. 5
3.4 Project Timeline/Schedule... 6
3.5 Risks And Risk Management/Mitigation...6
3.6 Personnel Effort Requirements.. 7
3.7 Other Resource Requirements... 9

2

3 Project Plan
3.1 Project Management/Tracking Procedures

For our project, we’ll be using the agile development project management style. This was
decided to help adapt quickly to any new requirements needed for the project and contain any
errors that come up. Our sprints will be 2 weeks long, and we’ll meet weekly with our advisor
and client. This consistency will ensure our sprints are productive and deadlines are met, while
streamlining the development process and guaranteeing quality work by all team members. The
project’s progress will be documented through the Gitlab issues board; these issues will be
created from our task decompositions so group members can select given tasks and will be
completed with separate branches. All of the issues will be affiliated with a milestone our team
aims to complete by a particular date.

3.2 Task Decomposition

Frontend (F):

1. Main Map Interface
a. Task: Integrate Google Maps into the user interface and start the display over the

Iowa State Campus
b. Task: Ensure the user can zoom in/out and move the map around
c. Task: Create a button to return the user to the starting point of the map

2. User Interface
a. Task: Create the generic layout of the page with the header and footer.
b. Task: Have a help button that links to a help page describing the project and what

data may mean.
c. Task: Have a menu to select what UE to track based on the bus.

3. Data Integration from Backend
a. Requires the WebSocket task from the backend and the main map interface.
b. Task: Create a WebSocket connection to Django and parse the data received.
c. Task: Call functions that update the UI to display all the updated bus data.
d. Task: Have a bus icon appear on the map where their coordinates are.

4. Bus information
a. Requires the WebSocket task from the backend and the main map interface.
b. Task: When a click occurs on a bus, display the data about the bus, including but

not limited to name, route, speed, heading, latitude, longitude, Rx/Tx frequency,
and UE strength.

c. Task: Have a function to update the data given updates from Django.
5. Bus Location Visualization

3

a. Requires the WebSocket task from the backend and the main map interface.
b. Task: Given an update of data, move the bus to the new location in a smooth

transition.
c. Task: If a UE has no connection, turn the path red else, if connected, turn the path

green.
d. Task: Display the estimate for when the bus will be back in range based on data

from Django.

Backend (B):

1. WebSocket creation
a. Task: Create a WebSocket that allows connections to receive updates on data for

the buses.
b. Task: Format the data that will need to be sent in the WebSocket and how it

should be parsed.
2. Connection to the UE service LibreNMS

a. Task: Setup an API call for the LibreNMS service that receives the necessary data
for the UE’s. This data can include the name, speed, heading, latitude, longitude,
and Rx/Tx frequency

b. Task: Whenever data is received, it can be saved to the database to be used by the
machine learning model.

3. Data processes and prediction (ML)
a. Task: When the UE has no connection, use GPS, and Google Maps API to

receive data about the bus and store that data in the database.
b. Task: Create a Machine Learning model that uses the bus location and pathing to

predict the bus movement.
4. Manage Database

a. Task: Make efficient use of keys and tables to make sure that query times are
efficient.

Testing (T):

1. Frontend Testing
a. Task: Use a test suite to test the UI components to make sure that they load

correctly and have the correct data appear. This can also test edge cases to make
sure that data is formatted correctly based on what is given.

b. Task: Create tests to ensure data can be parsed and errors are handled if any
received data is malformed or missing.

2. Backend Testing

4

a. Task: Use a test suite to make sure that connections to all external APIs are setup
correctly, connected, and receive expected results.

b. Task: Create tests to ensure that malformed data is handled correctly within the
APIs and when stored in the database.

Server (S):

1. Download necessary applications and dependencies
a. Task: Download MySQL and set up the database so that applications can connect.
b. Task: Download Python and its dependencies for Django.
c. Task: Download Node.js and install React.

2. Setup CI/CD
a. Task: Create the CD for the server to deploy and start the application on an

update from GitLab
b. Task: Create CI branches for all tasks that get merged into the main branch to be

tested and deployed.

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria

Milestone 1 - F1, F3, B1, S1, S2
The first milestone is to have a bus icon appear on the Google Maps integration with mock data
from the backend. This shows that the data retrieved about the bus locations can be displayed
and updated. The milestone also has the server set up with the application so that all changes to
the main branch are automatically deployed for continuous development.

Milestone 2 - F2, F4, B2, B4
The second milestone is to retrieve data from the user equipment using the LibreNMS service
and store it in the database. This data can then be retrieved by Django and sent to the front end to
display the bus location updates along with other data provided. In this stage, the goal is to have
a responsive frontend that takes < 0.5 seconds to retrieve updates and provides a clean bus
movement transition. This milestone also covers other user interfaces that would be needed by
users–but not critical to the main functionality–including a help page to help integrate users into
the platform, and an about page that describes the project.

Milestone 3 - F5, B3
This milestone is important, as it completes the functionality of the project, giving users constant
updates on the bus location using multiple methods of prediction. The first is the UE data
retrieved when it is within range of towers to transmit data, and then machine learning uses the
bus GPS coordinates to predict the bus movement. The method of prediction will be shown to

5

the user and give insight into when methods may change while giving accurate predictions that
are close to 95% of the bus's actual location/arrival time.

Milestone 4 - T1, T2
This is a final milestone that can be achieved depending on time constraints. The goal is to
ensure the application runs correctly with 100% of tests passing. The testing would cover unit,
integration, system, and acceptance testing.

3.4 Project Timeline/Schedule

3.5 Risks And Risk Management/Mitigation

Possible Risks Probability Risk Severity Analysis

No working user
equipment

0.1 High If there is no usable working
equipment for testing, we might have

6

to pivot to other tracking methods to
get locations. Otherwise, there would
be no way to test UE data and the
system.

No user equipment on
running buses

0.4 Medium If there were user equipment on a bus
running a route, we would have to
drive the UE around to test data
collection manually. This would
require more time for development.

Inaccurate machine
learning model

0.3 High The less the ML model is used the less
accurate it's going to be, so it's
expected to not be as reliable in the
beginning. Our team will start early
on developing the model to make sure
it can predict locations in the end
otherwise, we won’t have any time
estimates for users.

Technical Issues 0.2 Medium Many external applications and new
software are being used in this project.
They may cause setbacks or
roadblocks for development that our
team must overcome.

3.6 Personnel Effort Requirements

Task Hours Expected Explanation

Frontend -—----—-----------—----—---- —----—----—----—----—----

Main Map Interface 15 Configure Google Maps API
to display the interface for
Ames

User Interface 20 Make a user-friendly interface
to make the application fit for
everyone

Data Integration from
Backend

20 Obtain the data (mock+UE)
to get constant location
updates to use for the bus
updates

7

Bus information 15 Grab the data from the bus
and display any information
for the user, such as arrival
times or any other insights

Bus Location Visualization 20 Use the Data pulled from the
backend to fetch
longitude/latitude locations
and constantly update bus
locations on the map.

Backend —----—----—----—----—---- —----—----—----—----—----

WebSocket creation 20 To send and get real-time
updates of data with the help
of the backend and the
database storage.

Connection to the UE service
LibreNMS

25 Setting API calls to fetch and
store data from UE in the
database.

Data processes and prediction
(ML)

35 Creating a process to handle
data when there is no
connection to the UE. The
ML model will (to its best
ability) accurately display bus
movement based on past data
from DB.

Manage Database 15 Creating well-defined tables,
schemes, and keys to
store/manage data efficiently
and cleanly.

Testing —----—----—----—----—---- —----—----—----—----—----

Frontend Testing 25 Testing all the tasks and
milestones worked on
iteratively ensures all are
working and displaying
properly.

Backend Testing 25 Like the Frontend testing,
tests, tasks, and milestones
regarding the backend and

8

making sure they are
processing data correctly.

Server —----—----—----—----—---- —----—----—----—----—----

Download necessary
applications and
dependencies

7 Make sure everything is
downloaded regarding the
application so that the
application can run as
intended with no issues

Setup CI/CD 7 Allow the application to run
constantly with automatic
pulls and updates

3.7 Other Resource Requirements
The project requires a server to run the application and give access to individuals to view bus
locations. It also requires working user equipment that will be put on a CyRide bus to test data
transmission.

9

